Kamis, 28 April 2016

KIMIA ORGANIK SINTESIS -kimia Berwarna

Total Sintesis Senyawa Mitomycin

Obat-obatan kemoterapi dapat dibagi menjadi beberapa golongan berdasarkan faktor bagaimana obat itu bekerja, struktur kimia obat dan hubungan obat yang satu dengan obat lainnya. Beberapa obat kemoterapi digolongkan bersama karena berasal dari sumber tanaman yang sama. Beberapa obat juga memiliki mekanisme kerja lebih dari satu cara, sehingga obat tersebut memiliki lebih dari satu golongan.
Mengetahui bagaimana suatu obat bekerja adalah penting dalam memperkirakan efek samping yang akan terjadi. Hal ini membantu ahli onkologi memutuskan obat mana yang dapat bekerja dengan baik. Informasi ini juga akan membantu para ahli dalam merencanakan kapan tepatnya setiap obat harus diberikan (seberapa sering  diberikan) jika lebih dari satu obat yang akan digunakan.

Anthracycline adalah antibiotik anti-tumor yang mengganggu enzymes involved dalam replikasi DNA. Obat ini bekerja di semua fase siklus sel. Golongan obat ini juga digunakan secara luas untuk berbagai kanker. Pertimbangan utama ketika memberikan obat ini adalah bahwa golongan obat ini secara permanen dapat merusak jantung jika diberikan dalam dosis tinggi. Untuk alasan tersebut, diperlukan batasan penggunaan dosis bagi seseorang untuk seumur hidup. Salah satu anthracycline merupakan senyawa mitomycin. Terdapat dua jenis mitomycin yang telah diisolasi dari Streptomyces caesipitorus, yaitu :
Mitomycin ini aktif terhadap bakteri gram positif dan negatif gram dan juga menunjukkan aktivitas yang luas terhadap sel tumor. Mitomycin C telah terbukti menjadi lebih kuat dan merupakan agen antitumor banyak diresepkan. molekul-molekul ini mengerahkan aktivitas biologis mereka yang kuat dengan silang untai DNA. Berikut ini adalah beberapa struktur dari senyawa mitomycin, yaitu sebagai berikut :

Mekanisme reaksi mitomycin sebagai obat antikanker adalah berikatan dengan DNA tumor sehingga replikasi DNA dari tumor terganggu dan lama kelamaan akan mati. Berikut ini adalah mekanisme reaksinya :
Berdasarkan mekanisme reaksi diatas,  pada tahap I mitomycin C direduksi yang berfungsi untuk melindungi gugus fungsi karbonil sehingga struktur nya berubah menjadi ; O karbonil (atas) menjadi elektropositif dan PEB nya berdelokalisasi pada cincin siklik, serta O karbonil (bawah) menjadi OH. Berikut ini adalah reaksi yang terjadi pada tahap I :
Pada tahap II terjadi pelepasan –Ome dari struktur menjadi MeOH sehingga electron berdelokalisasi pada cincin siklik membentuk ikatan rangkap, seperti dijelaskan pada reaksi berikut :
Selanjutnya pada tahap III, struktur mitomycin mengalami reaksi alkilasi oleh DNA tumor, reaksinya adalah sebagai berikut :
Pada tahap IV, DNA membentuk siklisasi dan melepas gugus –OCONH2  yang diilustrasikan pada gambar berikut ini :

Pada tahap akhir, terjadi reaksi oksidasi untuk mendapatkan gugus karbonil pada struktur awalnya, reaksinya adalah sebagai berikut :
Senyawa mitomycin dapat disintesis di laboratorium dengan menggunakan pendekatan kishi, dimana pada pendekatan kishi ini, menyatakan bahwa mitomycin dapat disintesis menggunakan precursor sederhana awalnya orto-dimetoksi toluene. Berikut ini adalah mekanisme reaksi pendekatan kishi senyawa mitomycin :

Berikut ini adalah mekanisme reaksi sintesis senyawa mitomycin berdasarkan pendekatan khisi-nya yang meliputi beberapa tahapan, yaitu :
a        a.  Pembentukan senyawa intermediet aromatik

Berdasarkan gambar diatas, dapat dijabarkan mekanisme reaksinya, yaitu sebagai berikut :
  • Tahap I


Pada tahap ini, TiClbertindak sebagai katalis asam (karna mengikat 4 Cl) dan dikloro metoksimetana sebagai reagennya. Gugus metoksi pada senyawa orto-diklorotoluena merupakan pengarah orto-para sehingga substituen dikloro metoksi metana akan tersubstitusi pada posisi orto. Selanjutnya Cl akan lepas karna adanya katalis TiCl4 sehingga menyebabkan O menjadi rangkap dan akan mendesak metil lepas dan terbentuk aldehid.
  • Tahap II

Pada tahap ini digunakan reagen mCPBA (metacloroperoksibenzoit acid) yang merupakan reagen yang mudah menjadi radikal seperti pada gambar dibawah ini :

Karna berikatan dengan suatu radikal, sehingga menyebabkan senyawa yang terbentuk  menjadi radikal pula, seperti pada gambar berikut ini :


Setelah itu radikal-radikal tersebut akan bereaksi membentuk senyawa berikut ini :

  • Tahap III


Pada tahap ini, terjadi 3 step yaitu yang pertama menggunakan reagen NaOMe, yang kedua menggunakan reagen MeOH yang menghasilkan senyawa ester dan yang ketiga menggunakan air untuk menghidrolisis ester dan menghasilkan gugus hidroksi atau senyawa orto-dimetoksi meta-hidroksi toluene.

  • Tahap IV

Pada tahap ini terjadi reaksi substitusi elektrofilik dari 3-bromo-1-propena, H yang terikat pada O akan berikatan dengan Br- sehingga propena akan tersubstitusi pada O.
  • Tahap V

Pada tahap ini, terjadi delokalisasi membentuk keton yang selanjutnya terjadi reaksi reduksi menghasilkan senyawa 2,6-dimetoksi-3-hidroksi-4-alil-toluena. Setelah terbentuk senyawa 2,6-dimetoksi-3-hidroksi-4-alil-toluena terjadi beberapa reaksi yang dijelaskan pada gambar berikut ini :
  • Tahap VI

  • Tahap VII

Pada tahap ini, digunakan Zn sebagai reduktor.

  • Tahap VIII


Pada tahap ini, dimasukkan N-benzilamin (Bn) yang berfungsi sebagai gugus pelindung pada hidroksi.
  • ·         Tahap IX

Selanjutnya adalah pembentukkan epoksida dari dioksan, seperti yang dijelaskan pada gambar berikut ini :

  • Tahap X


Pada tahap ini, cincin epoksida membuka dan disubstitusi olen CH3CN dan menyebabkan O kekurangan elektron sehingga ditambahkan CrO3- sehingga menghasilkan keton.
b.  Pembentukan cincin medium

  • Tahap I

Pada tahap ini terjadi reaksi substitusi –OMe.
  • Tahap II

Pada tahap ini, CN direduksi oleh LAH menjadi NH2
  • Tahap III

Pada tahap ini, gugus pelindung Bn dihilangkan dengan menggunakan katalis Pd, karbon untuk menyerap air dan methanol untuk mengasamkan. Hal ini diilustrasikan pada gambar berikut ini :


  • Tahap IV

Pada tahap selanjutnya adalah dengan mengoksidasi senyawa yang telah didapat dan menggunakan metanol sebagai pelarut, reaksinya adalah sebagai berikut :

c.  Siklisasi transannular
Pada tahap ini, terbentuk cincin siklik baru dari gugus NH dengan 2 jalan, yang pertama dengan menggunakan MeOH dan SiO2 dan jalan yang kedua adalah dengan menggunakan gugus S-Me dan Et3N seperti yang dijelaskan pada gambar berikut ini :

Berikut ini adalah reaksi siklisasi dengan menggunakan jalur pertama menggunakan MeOH dan SiO2 yaitu sebagai berikut :



Daftar Pustaka :

Kamis, 21 April 2016

GUGUS PELINDUNG AMINA

Gugus Pelindung Amina

Gugus pelindung pada amina
RNH2, R2NH
 Carbamates (very common):
            O
R'= Me, tBu, etc.
R2'N        OR'
       Amina adalah senyawa berbasis nitrogen-. Sama seperti air berhubungan dengan alkohol yang terkait dengan eter, dll, amina mengikuti pola yang sama
       Tentu saja ada perbedaan besar antara cara senyawa berbasis oksigen dan senyawa berbasis nitrogen bereaksi. Hal utama yang perlu diingat adalah bahwa amina memiliki sangat "aktif" pasangan bebas - mereka jauh lebih mendasar, dan banyak lagi nukleofilik daripada alkohol atau eter.

Berikut adalah gugus pelindung dari amina














Gugus
Gugus pelindung (GP)
Penambahan
Penghilangan
Ketahanan GP
GP reaktif terhadap
Amina
Amida




RNH2
RNHCOR’
R’OCCl
OH-- /H2O
elektrofil


Uretan





RNHCO.OR’
R’OCOCl
H2 /katalis
atau HBr
elektrofil
Basa, nukleofil

RNHCOOBu-t
t-BuOCOCl
H+
elektrofil
Basa, nukleofil

flalimida
Anhidrida ftalat
NH2NH2
elektrofil
Basa, nukleofil






berikut adalah tabel gugus pelindung amina:
       Dalam reaksi kemo selektif, Gugus pelindung yang dapat bereaksi dengan gugus fungsi amina dan memproteksi suatu amina baik itu amina primer,skunder dan tersier, jenis gugus pelindung, penambahan, penghilangan, ketahan gugus pelindung serta reaktif terhadap elektrofil atau nukleofil

          apabila tingkat kebasaan suatu amina, tingkat kebasaan suatu amina mempengaruhi untuk masuknya suatu gugus pelindung, sebagai persoalan misalkan suatu amina primer mengikat gugus phenil, hal ini mengakibatkan sifat kebasaan amina menurun karena terjadinya delokalisasi elektron oleh karena itu gugus pelindung seperti Benzyl tidak selektif jika digunakan akibat terjadinya delokalisasi elektron tersebut, maka dibutuhkan gugus pelindung yang lebih selektif dalam memproteksi gugus amina tersebut, gugus pelindung tersebut ialah gugus asetil yang mengakibatkan amina membentuk amida

Daftar Pustaka
http://s3.amazonaws.com/academia.edu.documents/31470960/Sintesis_Organik.pdf
Warren,Stuart.1983.Penciptaan Sintesis Organik. Yokyakarta: Gadjha Mada University Press

Jumat, 08 April 2016

KIMIA ORGANIK

IKATAN KOVALEN KOORDINASI

Ikatan kovalen koordinasi adalah ikatan kovalen yang terbentuk dengan cara pemakaian bersama pasangan elektron yang berasal dari salah satu atom/ion/molekul yang memiliki PEB. Adapun atom/ion/molekul lain hanya menyediakan orbital kosong.
NH4Cl merupakan salah satu contoh senyawa kovalen koordinasi. Perhatikan kovalen koordinasi pada NH4+ di bawah.
ikatan kovalen koordinasi
Senyawa NH4Cl terbentuk dari ion NH4+ dan ion Cl. Ion NH4+ terbentuk dari molekul NH3 dan ion H+, sedangkan ion H+ terbentuk jika hidrogen melepaskan satu elektronnya.
Ikatan kovalen koordinasi digambarkan dengan lambang elektron yang sama (dua titik). Hal itu menunjukan bahwa pasangan elektron itu berasal dari atom yang sama.
Ikatan kovalen dituliskan dengan tanda (-), sedangkan kovalen koordinasi dituliskan dengan tanda (→). Jika NH4+ berikataan dengan Cl, akan terbentuk senyawa NH4Cl. Jadi, pada senyawa NH4Cl terdapat tiga jenis ikatan, yaitu tiga ikatan kovalen, satu ikatan kovalen koordinasi, dan satu ikatan ion (antara ion NH4+ dengan ion Cl). Agar sobat lebih memahami ikatan kovalen koordinasi, pelajarilah pembentukan senyawa-senyawa berikut.
1. Senyawa SO3
Atom 16S memiliki konfigurasi elektron 2  8  6. Jadi, atom ini memiliki enam elektron valensi. Atom 8O memiliki konfigurasi elektron 2  6. Untuk membentuk senyawa SO3 yang memenuhi kaidah oktet, sepasang elektron dari atom S akan berikatan dengan sepasang elektron dari atomO sehingga membentuk satu ikatan rangkap dua. Dua pasang elektron lainnya dari atom S akan membentuk dua ikatan kovaleen koordinasi dengan dua atom O.
ikatan kovalen koordinasi SO3
ikatan kovalen koordinasi SO3Jadi, dalam senyawa SO3 terdapat satu ikatan rangkap dua ddan ikatan kovalen koordinasi.
2. Senyawa HNO3
Pada penggambaran struktur lewis molekul HNO3, elektron yang berasal dari atom H ditandai dengan (x), elektron dari N ditandai dengan (x), dan elektron dari O ditandai dengan (.).
ikatan kovalen koordinasi HNO3
Jadi, dalam molekul HNO3 terdapat 3 ikatan kovalen dan 1 ikatan kovalen koordinasi.
Demikian tulisan mengenai ikataan kovalen koordinasi. Jika ada masukan, saran ataupun pertanyaan silahkan berkomentar ya. Semoga bermanfaat…..

gugus pelindung alkohol

SINTESIS ORGANIK : GUGUS PELINDUNG



Gugus Pelindung
Reaksi kimia yang memiliki gugus fungsi lebih dari satu memerlukan reaksi selektif untuk menghindarkan terjadinya reaksi terhadap seluruh gugus fungsi yang ada akibat pengaruh dari pereaksi yang berlebihan.
Dalam mendapatkan reaksi yang selektif terhadap gugus fungsi yang menjadi sasaran perubahan reaksi, maka gugus fungsi lain yang memiliki potensi untuk terserang diberi perlindungan. Perlindungan terhadap gugus fungsi yang diharapkan tidak mengalami perubahan tersebut dilakukan dengan cara melindungi gugus fungsi itu terlebih dahulu secara selektif agar tidak terserang oleh pereaksi yang diberikan. Semua gugus fungsi memiliki cara tertentu melalui penggunaan pereaksi untuk melindunginya, baik gugus karbonil, hidroksil, amino, ikatan rangkap dan gugus lainnya (Greene, 1991).
Gugus amino mempunyai pereaksi tertentu untuk melindunginya misalnya dengan AcOC6H4-p-NO2, pH 11. Perlindungan gugus amina dengan AcOC6H4-p-NO2 akan membentuk –NHAc. Sebagai contoh :
 
Pereaksi lain yang digunakan untuk melindungi gugus amino adalah asetaldehida, ionCu(II), dan asam perklorat. Pereaksi yang menggunakan R2NCOCH2Cl dengan contoh reaksi sebagai berikut:

 
Deproteksi terhadap gugus amino dapat dilakukan antara lain dengan menggunakan asetat anhidrida, K2CO3, Hog kidney asilasi dan bromokatekolboran.
Gugus pelindung adalah gugus fungsi yang digunakan untuk melindungi gugus tertentu supaya tidak turut bereaksi dengan pereaksi atau pelarut selama proses sintesis. Deproteksi adalah penghilangan atau reduksi gugus pelindung menjadi gugus fungsi awal yang dilindungi.
            Pemilihan gugus pelindung :
1.      Mudah dimasukan dan dihilangkan.
2.      Tahan terhadap reagen yang akan menyerang gugus fungsional yang tidak terlindungi.
3.      Stabil dan hanya bereaksi dengan pereaksi khusus untuk mengenbalikan gugus fungsi aslinya.
4.      Gugus pelindung seharusnya tidak mengganggu reaksi yang dilakukan sebelum dihapus.




 
   Apabila molekul mengandung beberapa gugus fungsional yang mirip, mungkin perlu dilindungi dengan cara yang berbeda, sehingga mereka dapat dihilangkan dengan kondisi yang berbeda-beda.


Penghilangan gugus pelindung dapat terjadi karena :
1.      Solvolisis dasar penguraian oleh pelarut
Contoh : Hidrolisis, Alkoholisis
2.      Hidrogenolisis
3.      Logam berat
4.      Ion fluoride
5.      Fotolitik
6.      Asam / basa
7.      Elektrolisis
8.      Eliminasi reduktif
9.      β-eliminasi
10.  Oksidasi
11.  Substitusi nukleofilik
12.  Katalisis logam transisi
13.  Enzim
Contoh sintesis alcohol dari ketoester 
·    Ester t-butil  sanagat mudah dihidrolisis dalam suasana asam. Ester merupakan gugus     pelindung yang baik untuk melindungi alkohol dari asam.

 
·         Suatu ester benzil (seperti ester benzil atau amina) dapat diputus dengan hidrogenolisis.
·       Gugus methylthiomethyl (MTM) dihapus dihapus oleh asam atau dapat dibelah dengan perak berair atau garam merkuri (netral merkuri klorida) yang kebanyakan eter yang stabil sebagai hasilnya.
·     Logam alkali (seperti Li) dalam ammonia cair biasanya diterapkan untuk deproteksi benzil (Bn) eter. 
·    2-(trimetilsilil) esteretoksimetil biasanya dipecah dengan HF dalam asetonitril oleh ion    fluoride.
·       Ester fenasil dapat dihilangkan dengan cahaya dengan panjang gelombang 308-313 nm           dengan > hasil 70 %.
·        Misal, iradiasi/pemancaran larutan buffer ester dari p-hidroksi fenasil di suhu kamar.

 
·         Metil ester dihilangkan dengan basa
Contohnya :LiOH dapat memecah gugus metil ester sedangkan gugus Boc (t-Butoxycarbonyl) tetap utuh.


 
·     Gugus MEM (Metoksi Etoksi Metil) dapat selektif dihilangkan denagntrimetilsilil iodida      dalam asetonitril tanpa mempengaruhi metil eter atau gugus ester.



 
·         Gugus Metoksi Metil (MOM) adalah salah satu gugus yang baik untuk melindungi kelompok  alcohol dan fenol.
·         MOM eter dapat dibuat dari alkohol atau fenol dengan MOMCl (Metoksi Metil Clorida) atau  MOMOAc (Metoksi Metil Asetat).
     
       
Reference
http://repository.usu.ac.id/bitstream/123456789/25607/3/Chapter%20II.pdf
Warren, Stuart.1981. Sintesis Organik Pendekatan Diskoneksi. Yogyakarta: Gajah Mada University Press.
Warren, Stuart.1931. Sintesis Periptaan Sintesi Organik. Yogyakarta: Gajah Mada University Press.seven david